

We often use covariances to calculate slopes, but standardized covariances – i.e. correlations – for interpretation.

Standardization

Unstandardized coefficient = absolute strength of the pathway
"An 1 unit change in X results in some unit change in Y"

$$\beta_{xy \text{ std}} = b_{xy} * sd_x/sd_y$$

- Standardized coefficient = relative strength of the pathway
 - "A 1 standard deviation change in X results in some standard deviation change in Y"
 - Path Coefficient

Standardization		
Unstandardized	Standardized	
Good for prediction: coefficients are in raw units	Good for ranking: coefficients are in equivalent units	
Has direct real world meaning	Less clear real world meaning	
Can be compared across pathways or models that have identical units	Can be compared across all pathways in all models	

Overview

1. Covariance and Correlation

- 2. Pieces of a Path Diagram
- 3. Model Structure and Identification

Terms & Definitions.

- Structural equation model = observed, latent, composite
- Direct acyclic graph (DAG) = observed
 - Path diagram = observed, ...

Overview		
1. Covariance and Correlation		
2. Pieces of a Path Diagram		
3. Model Structure and Identification		

Identification. Can I fit my model?		
3 = a + b 4 = 2a + b	a and b have unique solutions	Just identified
3 = a + b + c 4 = 2a + b + 3c	<i>a, b,</i> and <i>c</i> have no unique solution	Underidentified
3 = a + b 4 = 2a + b 7 = 3b + a	<i>a</i> and <i>b</i> have unique solutions, more knowns than unknowns	Overidentified

Exercise: Start Thinking About Your System

- 1. Sketch a model of 4-5 variables of your system
 - Think fast!
 - This does not have to be COMPLETE
- 2. Label exogenous and endogenous variables
- 3. Is your model identified? Fix if not!
- 4. Is it recursive? Can you break recursive relationships? If so, redraw.
- 5. Write out paths of indirect effects
- 6. Are any of your variances linked to other parts of the system?

