

Overview

1. Covariance and Correlation
2. Pieces of a Path Diagram
3. Model Structure and Identification

Covariance and correlation

We often use covariances to calculate slopes, but standardized covariances - i.e. correlations - for interpretation.

Standardized Covariance Matrix

	x_{1}	x_{2}	y_{1}

x_{1}	1.0		
x_{2}	0.76	1.0	
y_{1}	0.44	0.63	1.0

Standardization

- Unstandardized coefficient = absolute strength of the pathway - "An 1 unit change in X results in some unit change in Y "

$$
\beta_{x y ~ s t d}=b_{x y} * s d_{x} / s d_{y}
$$

- Standardized coefficient = relative strength of the pathway
- "A 1 standard deviation change in X results in some standard deviation change in $Y^{\prime \prime}$
- Path Coefficient

Same Slope, Different Correlation

Regression: $y=a+b x$

Standardized Coefficients: $\mathrm{r}=\mathrm{b}$ * $\mathrm{sd}(\mathrm{x}) / \mathrm{sd}(\mathrm{y})$

Standardization

Unstandardized

Good for prediction:

coefficients are in raw units

Has direct real world meaning

Can be compared across pathways or models that have identical units

Standardized

Good for ranking: coefficients are in equivalent units

Less clear real world meaning

Can be compared across all pathways in all models

Regression: $y=a+b x$

Standardized Coefficients: $\mathrm{r}=\mathrm{b}$ * $\mathrm{sd}(\mathrm{x}) / \mathrm{sd}(\mathrm{y})$

Overview

1. Covariance and Correlation
2. Pieces of a Path Diagram
3. Model Structure and Identification

Exogenous variable $=$ independent variable, predictor

Terms \& Definitions.

- Structural equation model = observed, latent, composite
- Direct acyclic graph (DAG) = observed
- Path diagram = observed, ...

Terms \& Definitions.

Terms \& Definitions.

Endogenous variable

Terms \& Definitions.

Terms \& Definitions: Error coefficients

Terms \& Definitions: Error coefficients

Endogenous variable

Terms \& Definitions.

Endogenous variable

Terms \& Definitions.

Endogenous variable
Indirect Effect $=\gamma_{11} * \beta_{21}$

Terms \& Definitions.

Endogenous variable
Total Effect $=\gamma_{21}+\gamma_{11} * \beta_{21}$

- Uncertain causal relationship ($x_{1} \rightarrow x_{2}$, or $x_{2} \rightarrow x_{1}$, common driver)
- We do not care if variables are exogenous (but check for collinearity)
- Convention: show correlation between endogenous errors but not exogenous - still there, though!

Overview

1. Covariance and Correlation
2. Pieces of a Path Diagram
3. Model Structure and Identification

Identification. Can I fit my model?		
$\begin{aligned} & 3=a+b \\ & 4=2 a+b \end{aligned}$	a and b have unique solutions	Just identified
$\begin{aligned} & 3=a+b+c \\ & 4=2 a+b+3 c \end{aligned}$	a, b, and c have no unique solution	Underidentified
$\begin{aligned} & 3=a+b \\ & 4=2 a+b \\ & 7=3 b+a \end{aligned}$	a and b have unique solutions, more knowns than unknowns	Overidentified

Identification. Can I fit my model?

Underidentified (Oversaturated)

Identification. The t-rule

$T=9 \leq 10$, unsaturated

Identification. Cross-Lagged Panel Models.

- Time series analysis

- BACI designs
- Etc...

Exercise: Start Thinking About Your System

1. Sketch a model of 4-5 variables of your system

- Think fast!
- This does not have to be COMPLETE

2. Label exogenous and endogenous variables
3. Is your model identified? Fix if not!
4. Is it recursive? Can you break recursive relationships? If so, redraw.
5. Write out paths of indirect effects
6. Are any of your variances linked to other parts of the system?
