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Mixed Models in SEM

Overview

1. Fixed vs. Random

2. Pseudo-R2s

3. SEM Example of mixed models

4. Causal Modeling with Random Effects

5. Fully hierarchical SEM

Fixed vs. Random. Comparison

Fixed Random
Interested in drawing inferences / 
making predictions

Not particularly interested in any 
particular value or level

Represent values from the entire 
‘universe’ of interest

A (random) sample from a larger 
pool of potential values

Levels not interchangeable Levels interchangeable (could swap 
/ relabel levels without any change 
in meaning)

Directly manipulated Introduces incidental error (e.g., 
between subjects, blocks, sites, 
etc.)

Few levels / worth sacrificing d.f. to 
fit model

Many levels / cannot sacrifice d.f.
to fit model

Fixed vs. Random.  Why mixed models?

• More power than modeling the means of groups

• Reduces degrees of freedom necessary to fit model and estimate 
parameters (vs. modeling as a fixed effect)

• Accounts for uneven sampling within groups by using 
information across groups to inform the individual group means

• Can account  for non-independence of observations by explicitly 
modeling their covariances (e.g., among sites, individuals, etc.)
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Fixed vs. Random.  Random structure

Different configurations of random structure:

1. Varying intercept, fixed slope

2. Fixed intercept, varying slope

3. Varying intercept, varying slope

Fixed vs. Random.  Varying intercept

• Estimates different intercept, same slope for all levels of the 
random effect

Fixed vs. Random.  Varying intercept

• Good for block designs, repeated measures

• Can lead to overconfident estimates if levels 
are expected to respond differently (e.g., 
individuals in a drug trial)

Fixed vs. Random.  Varying intercept AND slope

• Estimates different slope, different intercept for all levels
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Fixed vs. Random.  Varying intercept AND slope

• Addresses multiple sources of non-
independence of within and between levels, 
leading to lower Type I and Type II error

• Random slopes can be extracted and used in 
other analyses (get error from lmerTools)

• Computationally intensive, may lead to non-
convergence

Fixed vs. Random. Nesting

• Hierarchical models represent nested 
random terms (e.g., site within region)

• Nesting further addresses non-independence 
by modeling correlations within and between 
levels of the hierarchy

• Good for stratified sampling designs (varying 
intercept) and split-plot designs (varying 
slope, varying intercept)

Fixed vs. Random. Crossed effects

• Multiple random effects that are not nested 
but apply independently to the observation 
(e.g., space and time)

Fixed vs. Random. Random structures

(1|group) random group intercept

(x|group) = (1+x|group) random slope of x within group with correlated 
intercept

(0+x|group) = (-1+x|group) random slope of x within group: no variation in 
intercept

(1|group) + (0+x|group) uncorrelated random intercept and random 
slope within group

(1|site/block) = (1|site)+(1|site:block) intercept varying among sites and among 
blocks within sites (nested random effects)

site+(1|site:block) fixed effect of sites plus random variation in 
intercept among blocks within sites

(x|site/block) = (x|site)+(x|site:block) = (1 + 
x|site)+(1+x|site:block)

slope and intercept varying among sites and 
among blocks within sites

(x1|site)+(x2|block) two different effects, varying at different levels

x*site+(x|site:block)
fixed effect variation of slope and intercept 
varying among sites and random variation of 
slope and intercept among blocks within sites

(1|group1)+(1|group2) intercept varying among crossed random 
effects (e.g. site, year)

http://glmm.wikidot.com/faq

http://glmm.wikidot.com/faq
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Fixed vs. Random. A warning

• Assumes fixed and random effects are 
uncorrelated
• e.g., all of your warm data points don’t 

come from a different site than your cool 
data points

• If possible, fit random effects as fixed effects 
and compare parameter estimates of other 
predictors

• Need to ensure appropriate replication at 
lowest level of nested factors (5-6 levels, 
minimum) – otherwise, fit as fixed effects

Fixed vs. Random. Different distributions

• lme4 can fit many kinds of different distributions using 
glmer

• Does not provide P-values (d.d.f uncertain, see: 
https://stat.ethz.ch/pipermail/r-help/2006-
May/094769.html) 

• Need to turn to pbkrtest package which estimates d.d.f. 
using the Kenward-Rogers approximation (less finicky 
than lmerTest)

• piecewiseSEM does this for you automatically using 
coefs

Fixed vs. Random. Different distributions

• nlme can only handle normal distributions
• Ives (2015): “For testing the significance of regression 

coefficients, go ahead and log-transform count data”

• glmmPQL in the MASS package uses penalized quasi-
likelihood to fit models, can incorporate many different 
distributions and their quasi- equivalents (e.g., quasi-
Poisson)
• Quasi-distributions estimate a separate term for how the 

variance scales with the mean, so ideal for over/under-
dispersed data

• Quasi-likelihood means no likelihood based statistics 
(e.g., AIC, LRT, etc.) for any models fit with glmmPQL

• Implementing R2 for quasi-distributions right now

Fixed vs. Random. Troubleshooting

• R has the most infuriating error messages

• Can sometimes solve by switching to a different optimizer
• lmeControl(opt = “optim”) usually works

• Reduce tolerance for convergence
• lmeControl(tol = 1e-4)

• Respecify random structure
• Optimizer constrained to have cov > 0, can sometimes get stuck 

bouncing around when random components are very close to 0

• https://stackexchange.com/
• Ben Bolker to the rescue! 

https://dynamicecology.wordpress.com/2013/10/04/wwbbd/

https://stat.ethz.ch/pipermail/r-help/2006-May/094765.html
https://stackexchange.com/
https://dynamicecology.wordpress.com/2013/10/04/wwbbd/
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Overview

1. Fixed vs. Random

2. Pseudo-R2s

3. SEM Example of mixed models

4. Causal Modeling with Random Effects

5. Fully hierarchical SEM

Pseudo-R2s. Omnibus test

• Fisher’s C is the global fit statistic for local estimation but has 
many shortcomings:

• Sensitive to the number of d-sep tests and the complexity 
of the model (harder to reject as the complexity 
increases)

• Sensitive to the size of the dataset (e.g., high n leads to 
low P)

• Fails symmetricity when dealing with unlinked non-normal 
intermediate variables

Pseudo-R2s. Local tests

• How do we infer the confidence in our SEM?

• Examine standard errors of individual paths, 
qualitatively assess cumulative precision

• Explore variance explained (i.e., R2), 
qualitatively assess cumulative precision

Pseudo-R2s. General linear regression

• Coefficient of determination (R2) = proportion of 
variance in response explained by fixed effects

• For OLS regression, simply 1- the ratio of unexplained 
(error) variance (e.g., SSerror) over the total explained 
variance (e.g., SStotal)

• Ranges (0, 1), independent of sample size

• Not good for model comparisons since R2 monotonically 
increases with model complexity
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Pseudo-R2s. Generalized linear regression

• Likelihood estimation is not attempting to minimize variance 
but instead obtain parameters that maximize the likelihood of 
having observed the data

• In a likelihood framework, equivalent R2 = 1- the ratio of the 
log-likelihood of the full model over the log-likelihood of the 
null (intercept-only) model

• Leads to identical R2 as OLS for normal (Gaussian) 
distributions, not so for GLM – need to use likelihood-based 
pseudo-R2 (e.g., McFadden, Nagelkerke)

Pseudo-R2s. Generalized mixed models

• Becomes even worse for mixed models because variance is 
partitioned among levels of the random factor, so what is the 
error variance?

• Need a new formulation of R2 :

• Marginal R2 = variance explained by fixed effects only
Fixed effects variance

Fixed effects variance
Random effects variance

Residual variance

Distribution-specific
variance 

Pseudo-R2s. Generalized mixed models

• Conditional R2 = variance explained by both the fixed and 
random effects

Fixed effects variance

Fixed effects variance
Random effects variance

Residual variance

Distribution-specific
variance 

Random effects variance

Pseudo-R2s. Generalized mixed models

• Comparison of marginal and conditional R2 can 
lead to roundabout assessment of ‘significance’ 
of the random effects (e.g., if conditional R2 is 
larger relative to marginal R2)

• Best to report both and allow readers to 
determine how their magnitude affects the 
inferences
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Overview

1. Fixed vs. Random

2. Pseudo-R2s

3. SEM Example of mixed models

4. Causal Modeling with Random Effects

5. Fully hierarchical SEM

SEM Example. Shipley 2009

• Hypothetical dataset: predicting latitude effect on survival of a 
tree species

• Repeated measures on 5 subjects at 20 sites from 1970-2006

• Survival (0/1) influenced by phenology (degree days until bud 
break, Julian days until bud break), size (stem diameter growth)

Latitude Degree 
days

Date Growth Survival

The Simulated Data Nested Structure in the Data
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SEM Example. Shipley 2009

• Two distributions: normal, binary (survival)

• Random effects: 
• Site-only: latitude
• Site and year: degree days, date
• Site, year, and subject: diameter, survival

Latitude Degree 
days

Date Growth Survival

SEM Example. What is the basis set?

Latitude Degree 
days Date Growth Survival

• Date ⏊ Lat | (Degree days)
• Growth ⏊ Lat | (Date)
• Survival ⏊ Lat | (Growth)
• Growth ⏊ Degree days | (Date, Lat)
• Survival ⏊ Degree days | (Growth, Lat)
• Survival ⏊ Date | (Growth, Degree days)

SEM Example. List of equations

Latitude Degree 
days Date Growth Survival

# Load data
shipley <- read.csv("shipley.csv")

# Create list of structural equations

shipley.sem <- psem(
lme(DD ~ lat, random = ~1|site/tree, na.action = na.omit,

data = shipley),
lme(Date ~ DD, random = ~1|site/tree, na.action = na.omit,

data = shipley),
lme(Growth ~ Date, random = ~1|site/tree, na.action = na.omit,

data = shipley),
glmer(Live ~ Growth + (1|site) + (1|tree),

family=binomial(link = "logit"), data = shipley)

)

# Get summary
summary(shipley.sem)

SEM Example. D-sep tests

Latitude Degree 
days Date Growth Survival

---

Tests of directed separation:

Independ.Claim Estimate Std.Error DF Crit.Value P.Value
Date  ~  lat + ...  -0.0091    0.1135   18    -0.0798  0.9373 

Growth  ~  lat + ...  -0.0989    0.1107   18    -0.8929  0.3837 
Live  ~  lat + ...   0.0305    0.0297   NA     1.0280  0.3039 

Growth  ~  DD + ...  -0.0106    0.0358 1329    -0.2967  0.7667 
Live  ~  DD + ...   0.0272    0.0271   NA     1.0038  0.3155 

Live  ~  Date + ...  -0.0466    0.0298   NA    -1.5626  0.1181 

Global goodness-of-fit:

Fisher's C = 11.538 with P-value = 0.483 and on 12 degrees of freedom
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SEM Example. Extract coefficients

Latitude Degree 
days Date Growth Survival

Coefficients:

Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate

DD       lat -0.8355    0.1194   18    -6.9960       0      -0.6877 ***
Date        DD  -0.4976    0.0049 1330  -100.8757       0      -0.6281 ***

Growth      Date   0.3007    0.0266 1330    11.2917       0       0.3824 ***
Live    Growth   0.3479    0.0584 1431     9.9552       0           NA ***

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05

Individual R-squared:

Response method Marginal Conditional
DD   <NA>     0.49        0.70

Date   <NA>     0.41        0.98
Growth   <NA>     0.11        0.84

Live  delta     0.16        0.18

Evaluate residuals by lapplying plot

SEM Example. For GLMMs, use DHARMa

#residuals for a glmm
library(DHARMa)
sims <- simulateResiduals(shipley.sem[[4]])
plot(sims)

SEM Example. Populate final model

Latitude Degree 
days Date Growth Survival

-0.84 -0.50 0.30 0.35

Coefficients:

Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate

DD       lat -0.8355    0.1194   18    -6.9960       0      -0.6877 ***
Date        DD  -0.4976    0.0049 1330  -100.8757       0      -0.6281 ***

Growth      Date   0.3007    0.0266 1330    11.2917       0       0.3824 ***
Live    Growth   0.3479    0.0584 1431     9.9552       0           NA ***

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05

R2 = 0.49 R2 = 0.41 R2 = 0.11 R2 = 0.16
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SEM Example. Populate final model

Latitude Degree 
days Date Growth Survival

-0.84 -0.50 0.30 0.35

Individual R-squared:

Response method Marginal Conditional
DD   <NA>     0.49        0.70

Date   <NA>     0.41        0.98
Growth   <NA>     0.11        0.84

Live  delta     0.16        0.18

R2 = 0.49 R2 = 0.41 R2 = 0.11 R2 = 0.16

Latitude Degree 
days

Date

Growth Survival

Latitude Degree 
days Date Growth Survival

SEM Example. Compare these models

Latitude Degree 
days

Date

Growth Survival

Latitude Degree 
days Date Growth Survival

SEM Example. Compare these models

AIC = 49.53

AIC = 71.24

Cardinale et al. (2009) - Does diversity drive 
productivity or vice versa?
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Multivariate Diversity-Productivity Model

Cardinale et al. 2009

Remember to center!

logN

logN2 Local
richness

Regional 
richness

Standing
biomass

# Load data
cardinale <- read.csv("../data/cardinale.csv")

# Take log of N and N^2

cardinale$logN <- log10(cardinale$N + 1e-6)

cardinale$logN2 <- cardinale$logN ^ 2

# Take log of chl (standing biomass)
cardinale$logChl <- log10(cardinale$Chl)

Remember to center!

logN

logN2 Local
richness

Regional 
richness

Standing
biomass

# Center polynomial to reduce collinearity
cardinale$logN.cen = scale(cardinale$logN, scale = F)

cardinale$logN2.cen = scale(cardinale$logN, scale = F) ^ 2

The Model without Mixed Effects

logN

logN2 Local
richness

Regional 
richness

Standing
biomass

> coefs(cardinale.sem2)

Response Predictor Estimate Std.Error  DF Crit.Value P.Value Std.Estimate    
1       SA  logN.cen   0.3668    0.4460 123     0.8223  0.4125       0.0618    

2       SA logN2.cen  -0.4742    0.2424 123    -1.9568  0.0526      -0.1470    
3       SA        SR   0.3838    0.0359 123    10.6844  0.0000       0.6893 ***

4   logChl        SA   0.0201    0.0040 123     5.0327  0.0000       0.3946 ***
5   logChl  logN.cen   0.0944    0.0275 123     3.4320  0.0008       0.3116 ***

6   logChl logN2.cen   0.0032    0.0150 123     0.2108  0.8334       0.0193 

-0.47

0.31

0.69

0.40
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Exercise: Fit with Stream as grouping variable

logN

logN2 Local
richness

Regional 
richness

Standing
biomass

1. What does the model look like?
2. How does it differ from the fixed effects only model?

The Model without Mixed Effects

# Re-fit SEM using centered predictors
cardinale.mixed <- psem(

lme(SA ~ logN.cen + logN2.cen + SR, 
random = ~1|Stream, data = cardinale),

lme(logChl ~ SA + logN.cen + logN2.cen, 

random = ~1|Stream,  data = cardinale),

data = cardinale
)

logN

logN2 Local
richness

Regional 
richness

Standing
biomass

The Model without Mixed Effects

> coefs(cardinale.mixed)

Response Predictor Estimate Std.Error  DF Crit.Value P.Value Std.Estimate    
1       SA  logN.cen   0.4356    0.3279 105     1.3284  0.1869       0.0734    

2       SA logN2.cen  -0.5136    0.1783 105    -2.8806  0.0048      -0.1592  **
3       SA        SR   0.4260    0.0663  18     6.4251  0.0000       0.7651 ***

4   logChl        SA   0.0117    0.0050 104     2.3525  0.0205       0.2285   *
5   logChl  logN.cen   0.0970    0.0223 104     4.3535  0.0000       0.3205 ***

6   logChl logN2.cen  -0.0022    0.0123 104    -0.1811  0.8566      -0.0136 

logN

logN2 Local
richness

Regional 
richness

Standing
biomass

-0.16 0.76

0.32

0.23

Compare with v. Without Random Effects

logN

logN2 Local
richness

Regional 
richness

Standing
biomass

-0.16 0.76

0.32

0.23

logN

logN2 Local
richness

Regional 
richness

Standing
biomass

-0.47

0.31

0.69

0.40

Mixed ModelFixed Effects Only Model
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Compare R2

> rsquared(cardinale.sem2)

Response   family     link method R.squared
1       SA gaussian identity   none 0.4882395
2 logChl gaussian identity   none 0.2538638

> rsquared(cardinale.mixed)
Response   family     link method  Marginal Conditional

1       SA gaussian identity   none 0.5255357   0.7535010
2   logChl gaussian identity   none 0.1568633   0.4773681

logN

logN2 Local
richness

Regional 
richness

Standing
biomass

-0.16 0.76

0.32

0.23

Overview

1. Fixed vs. Random

2. Pseudo-R2s

3. SEM Example of mixed models

4. Causal Modeling with Random Effects

5. Fully hierarchical SEM

Mixed Models and Graphical Models

Forest Hare 
Abundance

Forest Lynx
Abundance

Forest Understory
Vegetation

County

Random Effects are latents…

?

Mixed Models and Graphical Models

Forest Hare 
Abundance

Forest Lynx
Abundance

Forest Understory
Vegetation

County ErrorH

Errorv

Error is also a latent with mean 0 and some SD

Really, mixed model error is RE variability + Residual variability
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What’s Really Going on in Mixed Models

Forest Hare 
Abundance

Forest Lynx
Abundance

Forest Understory
Vegetation

ErrorH

Errorv

CountyV

ResidualV

CountyH

ResidualH

Note that there is no way for our RE to covary with our 
exogenous variable

What if our RE and Predictors Covary?

Lynx Abundance

Ha
re

 A
bu

nd
an

ce

County A County B County C

• Because our RE and 
predictor cannot covary, 
Simpson’s Paradox wins, 
and our inference looses

Solutions to our RE and Predictors Covarying
1. Have our RE as a fixed effect

• Can have interaction effects for variable slopes
• BUT – can cost DF, and open to critique of generalizability
• BUT – that doesn’t matter if you are interested in causal 

identifiability

2. Include centered group-level predictor and RE
• Covariate effect now estimated after controlling for correlation 

with group level mean
• Understanding that correlation can be tricky
• Interpretation of group-level covariate difficult

3. Include centered group-level predictor, deviation from group level 
predictor, and RE
• Correlation broken, so both terms easier to interpret
• Caution: group-level predictor contaminated by other site-level 

effects

1. Fixed Effect Model

Forest Hare 
Abundance

Forest Lynx
Abundance

Forest Understory
Vegetation

eH

eV

County
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FE Model Handles Simpson’s Paradox

Lynx Abundance

Ha
re

 A
bu

nd
an

ce

County A County B County C

2. Where does Group-Level Covariate Come From?

Forest Hare 
Abundance

Forest Lynx
Abundance

County

Things that covary 
with Lynxes

Other 
ThingsError

2. Incorporating Group Covariates

Forest Hare 
Abundance

Forest Lynx
Abundance

Forest Understory
Vegetation

ErrorH

Errorv

CV

eV

CH

eH

Mean County 
Hare  Abundance

Mean County 
Lynx Abundance

3. Incorporating Group Covariates & Centered Predictors

Forest Hare 
Anomaly

Forest Lynx
Anomaly

Forest Understory
Vegetation

ErrorH

Errorv

CV

eV

CH

eH

Mean County 
Hare  Abundance

Mean County 
Lynx Abundance

Anomalyij = Abundanceij – Mean Abundancei
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Are Random Effects Always the Answer?

• No!

•We need to be careful that we are not 
opening a new back door by relying on 
random effects

• But, through careful consideration of model 
structure, we can hold that back door shut, 
and then some!

Overview

1. Fixed vs. Random

2. Pseudo-R2s

3. SEM Example of mixed models

4. Causal Modeling with Random Effects

5. Fully hierarchical SEM

Filter Feeding Ostracods Living In 
Algae Site-Level Environmental 

Relationships
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Plot-Level Biotic Relationships But…site-level drivers of local 
phenomena

Our Model: What is the basis set?

Summer Algal 
Cover

Winter
Phytoplankton

Winter
Temperature

Ostracod
Abundance

The problem: Variable Sample 
Sizes

Summer Algal 
Cover

Winter
Phytoplankton

Winter
Temperature

Ostracod
Abundance

N=10

N=100
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Quandaries with hierarchical SEM

• What *is* our sample size?
• To some extent solved by hierarchical linear models
• But, different model components will have different n –

and hence different power

• How do we evaluate the basis set?
• Trickier…but, we can manage!

Our Basis Set

Summer Algal 
Cover

Winter
Phytoplankton

Winter
Temperature

Ostracod
Abundance

But which direction?

Basis Solutions

Summer Algal 
Cover

Winter
Phytoplankton

Winter
Temperature

Ostracod
Abundance

This makes no sense:
• Cannot ‘upscale’ from the 

site level

• We know causality cannot 
flow uphill

Basis Solutions

Summer Algal 
Cover

Winter
Phytoplankton

Winter
Temperature

Ostracod
Abundance

This DOES make sense:
• Can use winter temp as 

another hierarchical 
predictor

• Requires expanding/joining 
data frames (that’s OK)
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Our Model: Two Pieces (for now)

Summer Algal 
Cover

Winter
Phytoplankton

Winter
Temperature

Ostracod
Abundance

ostra_site <- read.csv("../data/ostracod_sitelevel.csv")
ostra_plot <- read.csv("../data/ostracod_plotlevel.csv")

Our Model: Two Pieces (for now)

#site level
ostra_site_model <- psem(

lm(winter_phytoplankton ~ winter_temp, data = ostra_site),

data = ostra_site

)

#plot level

ostra_plot_model <- psem(
lme(ostracod_abund ~ algal_cover + winter_phytoplankton,

random = ~1|site, data = ostra_plot),

data = ostra_plot

)

To get C, sum up C from 
submodels, and get hierarchical C

Summer Algal 
Cover

Winter
Phytoplankton

Winter
Temperature

Ostracod
Abundance

> fisherC(ostra_site_model)
Fisher.C df P.Value

1 0  0       1
2 > fisherC(ostra_plot_model)

Fisher.C df P.Value
1        0  0       1

To get C, sum up C from 
submodels, and get hierarchical C

Summer Algal 
Cover

Winter
Phytoplankton

Winter
Temperature

Ostracod
Abundance

basis_mod <- lme(ostracod_abund ~ algal_cover + 
winter_phytoplankton + winter_temp,
random = ~1|site, data = ostra_plot)
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To get C, sum up C from 
submodels, and get hierarchical C

Summer Algal 
Cover

Winter
Phytoplankton

Winter
Temperature

Ostracod
Abundance

Fixed effects: ostracod_abund ~ algal_cover + winter_phytoplankton + 
winter_temp 

Value Std.Error DF   t-value p-value
(Intercept)          5.677315 13.167862 89  0.431149  0.6674

algal_cover          0.324035  0.019371 89 16.728113  0.0000
winter_phytoplankton 6.508925  2.080789  7  3.128105  0.0167

winter_temp          1.210299  2.385633  7  0.507328  0.6275

To get C, sum up C from 
submodels, and get hierarchical C

Summer Algal 
Cover

Winter
Phytoplankton

Winter
Temperature

Ostracod
Abundance

> fish_c <- 0 + 0 + -2*log(0.6275)

> 1 - pchisq(fish_c, df = 1)
[1] 0.3343377

Hierarchical Models in SEM

• This is a new and fast developing area
• Additional methods in next version of lavaan, too

• In essence, everything is the same…

• Except we need to think carefully about what is the 
correct test of conditional independence

• Otherwise, we use conventional HLMs, as in a 
univariate sense


