







# Credible Intervals

In Bayesian analyses, the 95% *Credible Interval* is the region in which we find 95% of the possible parameter values. The observed parameter is drawn from this distribution. For normally distributed parameters:

## $\beta - 2SD \le \beta \le \beta + 2SD$

## Considerations for Bayes and SEM

- This is yet another engine but now we can use priors and credible intervals
- Makes error propagation for prediction easy
- Piecewise approach to local equation estimation - brms or directly in STAN or BUGS
- Although can use covariance estimation - blavaan

"There are no routine statistical questions, only questionable statistical routines"

- Sir David Cox

#### The brms library

- Uses Ime4-like syntax
   brm(y ~ x + 1|group, data = data)
- Calls STAN for HMC fitting

   Has to compile program first
- Constantly changing and improving























| Coefficients from Summary                                                                            |                                                                     |                                                   |                                                      |                                                      |                                            |                                      |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------------|--------------------------------------|
| Population-Level<br>rich_Intercept<br>cover_Intercept<br>rich_firesev<br>rich_cover<br>cover_firesev | Effects:<br>Estimate Es:<br>53.86<br>1.07<br>-2.52<br>9.95<br>-0.08 | t.Error 7<br>7.08<br>0.09<br>0.99<br>5.26<br>0.02 | I-95% CI<br>39.73<br>0.89<br>-4.44<br>-0.10<br>-0.12 | u-95% CI<br>68.06<br>1.25<br>-0.55<br>20.67<br>-0.05 | Eff.Sample<br>2000<br>2000<br>2000<br>2000 | Rhat<br>1.00<br>1.00<br>1.00<br>1.00 |

#### Checking Model Fit in a Bayesian Context

- COULD get posterior p-values and do something like a Fisher's C

   Untested as of yet... and philosophically odd
- More in line would be testing with WAIC

## Widely Applicable Information Criterion

- Like AIC, but, well, Bayesian
- WAIC = -2 log likelihood predictive density + 2 effective number of parameters

WAIC =  $-2 \text{ llpd} + 2p_{waic}$ 

=  $-2 \sum \log \Pr(y_i|\theta) + 2 \sum \operatorname{var}(\log \Pr(y_i|\theta))$ 

#### WAIC and SEM

- Each component model has its own WAIC
- We can sum the WAICs to get a modelwide WAIC

$$WAIC_{model} = \Sigma WAIC_{i}$$

#### Additive WAIC in Action

```
rich_fit <- brm(rich_mod,</pre>
                 data=keeley,
                 cores=2, chains = 2)
cover_fit <- brm(cover_mod,</pre>
                  data=keeley,
                 cores=2, chains = 2)
> WAIC(k_fit_brms)
   WAIC SE
 768.75 15.59
> WAIC(rich_fit)
   WAIC SE
 734.17 9.51
> WAIC(cover fit)
  WAIC
          SE
 34.64 12.57
```



# Model Comparison > WAIC(k\_fit\_brms, fit\_brms\_fullmed) WAIC SE k\_fit\_brms 768.75 15.59 fit\_brms\_fullmed 772.67 16.88 k\_fit\_brms - fit\_brms\_fullmed -3.92 5.42 Models are not different Parsimony suggest full mediation model

# Prediction with Error Propagation

- 1. Create a new data frame with exogenous variables
- 2. Calculate posterior simulations of most proximate endogenous variables (those with only exogenous predictors)
- 3. Use simulated values to calculate next set of endogenous variables
  - Take diag of prediction matrix to keep nsims constant
- 4. Rinse and repeat...





# 



## The Second Endogenous Prediction

#(from a 1000 x 1000 matrix)
rich\_fit\_values <- diag(rich\_fit\_values)</pre>







# predict versus fitted

- fitted gives simulations using only variance in coefficient values
  - Allows for exploration of how an exogenous data generating process propagates through a network
- predict incorporates residual variability
  - True prediction credible intervals
  - Effects of variability magnify through a network
- Both are affected by smaller sample sizes, particularly as you move through a network









