add_fitted_sims.lm.Rd
Generate simulations
from a lm model incorporating either error in
fitted error. Simulations explore the possible space
of what a model might predict rather than an interval for use
in comparison to Bayesian posteriors for non-Bayesian models. The
output format and functions draw inspiration from the
tidybayes::tidybayes()
library and
merTools::predictInterval()
# S3 method for lm
add_fitted_sims(newdata, mod, n_sims = 1000, seed = NULL, ...)
a data.frame of new data to predict
A lm model to simulate from.
number of simulation samples to construct
numeric, optional argument to set seed for simulations
Unused dots for compatibility with generic functions.
A tibble::tibble()
with information about simulate values.
Other lm:
add_predicted_sims.lm()
clotting <- data.frame(
u = c(5,10,15,20,30,40,60,NA,100),
lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12))
mod <- lm(lot1 ~ log(u) + lot2, data = clotting)
sims_fit <- add_fitted_sims(clotting, mod)
head(sims_fit)
#> # A tibble: 6 × 5
#> u lot1 lot2 .sim lot1_fit
#> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1 5 118 69 1 117.
#> 2 5 118 69 2 117.
#> 3 5 118 69 3 118.
#> 4 5 118 69 4 117.
#> 5 5 118 69 5 116.
#> 6 5 118 69 6 117.